The Thrifty Merchant

Shylock sells rare spices by the gram. He puts iron weights of various sizes (that are certified accurate) into one or both pans of his balance, then adds spice to the upper pan until the balance becomes level. A pan can hold up to 40 g of spice. (Note: iron fills less space per gram than spice does.)

Certified weights are very expensive, so Shylock owns the minimum number of these that enables him to measure any whole number of grams from 1 g to 40 g in a single weighing.

Shylock's balance
(a) How many certified weights does Shylock own and what does each one weigh?
(b) Shylock buys a new balance whose pans can hold up to 360 g of spice. How many extra certified weights will he need to measure any whole number of grams up to 360 g in a single weighing?

Answer:

(a) Shylock owns just 4 certified weights: one each of $1 \mathrm{~g}, 3 \mathrm{~g}, 9 \mathrm{~g}$, and 27 g .

The table below shows how the weights $1 \mathrm{~g}, 3 \mathrm{~g}$ and 9 g can be used to measure from 1 g to 13 g . Here L is the total of the weights put in the lower pan and U is the total of the weights put in the upper pan, so U is less than L. Then the amount of spice needed to level the balance will be $L-U$.

L	1	3	3	$4=3+1$	9	9	$10=9+1$	9	9	$10=9+1$	$12=9+3$	$12=9+3$	$13=9+3+1$
U		1			$4=3+1$	3	3	1			1		
$\mathrm{~L}-\mathrm{U}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$

On its own, the 1 g weight can measure only 1 g of spice. By using the 3 g weight as well, there are 3 extra possibilities: to measure 2 g , subtract 1 g from 3 g by placing them in different pans; measuring 3 g does not require the 1 g weight; to measure 4 g , add the 1 g to the 3 g by placing them in the same pan. So with a 1 g and a 3 g weight, there are $1+3=4$ possibilities.

Now consider the further possibilities that come from using a 9 g weight also. Each of the 4 possible totals that can be made from 1 g and 3 g can be subtracted from 9 g (to give 5 g up to 8 g) or added to 9 g (to give 10 g up to 13 g). In addition, 9 g can be used on its own. This makes $4+4+1=9$ new possibilities. So with a 1 g , a 3 g and a 9 g weight, there are $1+3+9=13$ possibilities, namely, from 1 g to 13 g .

Continuing in the same way, each of these 13 possibilities can be subtracted from or added to 27 g , which can also be used on its own. This makes $13+13+1=27$ more possibilities in which L-U takes the values from 14 g to 40 g .

Note that the weights are all powers of 3 . This follows from the interesting fact that each power of 3 can be obtained by doubling the sum of the lower powers of 3 and adding one.
(b) To measure up to 360 g of spice, Shylock will need just two extra weights in addition to those that he already owns. The weights 81 g and 243 g are sufficient; they would enable Shylock to measure up to 364 g if his scale pans were big enough. Several other combinations will do, such as 81 g and 239 g .

